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PREFACE 

This paper was prepared under an IDA Central Research Project titled 
“Application Theory of Target Recognition.” 

The authors wish to thank two of our colleagues, Amnon Dalcher and Michael 
Tuley, who have reviewed this paper and made some valuable suggestions. In particular, 
Dr. Dalcher suggested that the strange behavior being observed at low SNRs for the 
noncoherent case could be due to the need to employ a square-law detector at low signal-
to-noise levels. This questioning led to the revised formulation presented in Section V.C. 
Mr. Tuley asked whether our use of the Brennan and Reed criterion, while maximizing 
SNR, would also lead to maximum discrimination between two targets; Dr. Dalcher 
described the criterion’s relationship to the discriminability criteria test. Mr. Tuley also 
provided support to our concern about the feasibility of being able to make accurate 
phase measurements at low SNR values. 
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I.  INTRODUCTION 

Target identification remains a challenging problem for air combat, due often to 
the lack of an adequate number of ways to determine identities of all targets. High range 
resolution (HRR) radar offers a potential additional source of target identification 
information [1]. HRR employs a high-bandwidth radar signal to find the locations and 
relative intensities of the radar scatterers along the longitudinal axis of a target. The range 
resolution, ∆R, is given by ∆R ~ c / 2B, where c is the speed of light and B is the radar’s 
bandwidth. For example, a radar bandwidth of 150 MHz provides 1 m range resolution. 
A radar with this bandwidth could collect 30 separate radar cross-section measurements 
along the length of a 30 m long aircraft. One form of HRR involves merely determining 
the distance between the first and last return from a target to discern its length and 
thereby yield a simple target classification (e.g., fighter, bomber, cruise missile). A more 
sophisticated approach involves measuring each of the returns along the target’s length 
and comparing the locations and relative intensities of the observed scatterers to 
prestored target templates. The second approach typically produces more detailed target 
classification (e.g., F-15, MiG-29). 

Range-Doppler-imaging (RDI) radar offers an alternative way to use radar 
measurements to classify targets. Synthetic aperture radar (SAR) involves an airborne 
radar viewing a ground target from various angles (as the radar flies by or around the 
target) to create a two-dimensional image of the target. RDI, on the other hand, uses a 
relatively stationary radar to observe an airborne target from different angles as the target 
maneuvers or flies by the radar.1 As with SAR, RDI forms a two-dimensional image of 
the target by employing HRR techniques to detect scatterers in the radial direction from 
the radar and observing relative Doppler shifts to determine the cross-range position of 
the scatterers (see Figure 1, which illustrates relative velocity differences as a function of 
distance from the centroid of the target and rate of apparent target rotation). 

                                                 
1 The stationary radar could correspond to a fixed ground radar site. Alternatively, the “stationary” radar 

could be on a moving aircraft, but all the target measurements would be made with respect to a moving 
coordinate system that moves with the radar. Also, if the target is maneuvering in both a horizontal 
and vertical plane, then a 3-D image might be formed [2], but we will not consider this 3-D case in this 
paper. 
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Although a two-dimensional image would surely be more recognizable by a 
human, we wish to find an analytical basis for quantifying the inherent differences 
between target identification based on one-dimensional and two-dimensional target 
signatures. Our approach starts by representing a set of expected targets (either one-
dimensional or two-dimensional) as templates, typically multidimensional complex 
vectors.  

 

 

Figure 1.  Basis for Cross-Range Measurement 

Applying a matched-filter computational process (Sections III and IV), the vector 
templates are compared with a target return signal (corrupted by noise) to produce a set 
of scalar test statistics. The test statistics are compared and their associated probabilities 
of observation are estimated. These probabilities represent the probabilities of correct and 
incorrect target classification. The probabilities are typically presented in the form of 
confusion matrices (Chapter II). The details of these calculations depend on the statistics 
chosen and on the assumptions regarding the characteristics of the interference (noise, 
jamming, clutter) associated with the radar measurements. These noise characteristics 
govern the degree to which correct and incorrect classifications can occur. Some simple 
example calculations are presented in Chapter V. The methodology reported herein 
should provide insight into the underlying issues associated with target identification. 
Whereas these analyses are purely theoretical, in Chapter VI we discuss ways to extend 
the analyses to include real-world issues associated with target identification. 
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II.  CONFUSION MATRICES 

Confusion matrices provide a convenient format for representing the degree to 
which an identification process can correctly or incorrectly classify targets. If confusion 
matrices exist for multiple sensors, then the confusion matrices can be combined 
relatively easily to evaluate the result of a fused-identification (ID) decision [3]. We will 
define the rows of the matrix to correspond to true target types; the columns then 
represent the possible outputs of the identification sensor (sometimes the definitions for 
the rows and columns are interchanged). In general, the column headers need not 
correspond to the row labels. For example, the rows could represent F-15, F-16, MiG-29, 
B-52, and Silkworm. A sensor that determines only the relative length of such targets 
might only provide the following outputs: long, medium, and short, which would then 
serve as the column headers for the sensor’s confusion matrix. However, for the purposes 
of this paper, we wish to consider the special case of confusion matrices that have 
column headers that correspond to the row labels, for reasons that will become clear later 
on. Each row of the confusion matrix represents the conditional probability of each 
possible sensor output if the target were truly of the type defined by the row label. An 
ideal confusion matrix of this form would equal the identity matrix with probabilities of 
one on the diagonal and zeros elsewhere. A highly desirable (and potentially more 
feasible) confusion matrix would have its highest values along the diagonal but would 
inevitably have some probabilities in the off-diagonal elements. In any case, the row 
entries of a probability matrix must add to one, since the columns represent the set of all 
possible sensor outputs for the given true target. In the interest of improving the ratio of 
the probabilities of correct to incorrect reports from an identification sensor, we will also 
consider the case of an optional extra column that corresponds to an unknown or no 
declaration, as shown in Figure 2. In Figure 2, P(t2|t1) represents the probability of 
declaring target 2 when target 1 is actually being observed. 

This paper addresses a method to derive the conditional probability entries for 
these confusion matrices for both one-dimensional and two-dimensional target ID sensors 
(and even three-dimensional sensors if they should exist).  
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Figure 2.  Representative Confusion Matrix 

Before discussing procedures for calculating the entries in a confusion matrix, 
consider the simple problem2 posed below: 

• Let X be a random variable uniformly distributed between 0 and A. 

• Let Y be an independent random variable uniformly distributed between 0 
and B. 

• What is the probability that X > Y? 

From basic probability theory, the probability density of X = x is given by fx(x) = 
1/A. Similarly, fy(y) = 1/B. Because X and Y are independent, their joint probability 
density factors, that is, f(x,y) = fx(x)·fy(y) = 1/AB. If A ≥ B, then the probability of X > Y is 
given by 
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The second integral corresponds to summing the horizontal differential strips 
shown in Figure 3. If vertical strips were summed instead, then the following integral 
would apply:  
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2  A reader well versed in probability theory could skip to Chapater III, but the following equations will 

be applied in subsequent sections of the paper. 
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Figure 3.  Simple Probability Example 

Notice that as now formulated, the probability of X > Y would come from the 
same general equation (2) regardless of the domain of the random variables x and y. 
Moreover, the joint probability function, f (x, y), need not be uniform. That is, if f(x, y) = 
fT1(x, y) represents the joint probability of a sensor providing either an X or a Y indication 
when the true target is type t1, then (2) would generate the conditional probability 
P(X|t1)—the probability that an X indication would be provided when the true target type 
is t1. If the identification sensor only has outputs X or Y, then P (Y|t1) = 1 − P(X|t1). If the 
joint probability function is defined over all real numbers, then min(X) = −∞, min(Y) = 
−∞, max(X) = ∞, and min(x, max(Y)) = x. 

If the identification sensor has three possible outputs (X, Y, and Z) with 
probabilities defined over all real numbers, then a similar process could be used to find 
the probability that output X occurs (i.e., the probability that the random variable x has 
the largest value) when the true target type is ti, as follows: 

 ( ) ( )∫ ∫ ∫
∞

∞− ∞− ∞−

=>>=
x x

Ti dzzyxfdydxzxyxPXP ,,) and (ti . (3) 

Equation (3) extends to any number of output states in an obvious way. If we 
further assume that the random variables x, y, and z are independent, that is, fTi(x, y, z) = 
fXi(x) fYi(y) fZi(z), and can each range from −∞ to +∞, then:  

 

( )

∫

∫∫ ∫
∞

∞−

∞−

∞

∞− ∞−

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

>>=

dxxFxFxf

dzzfdyyfdxxf

zxyxXP

ZiYiXi

x

Zi

x

YiXi

)()()(

)()()(

) and (t i

 (4) 



 

 II-4 

where FYi and FZi are the cumulative distributions corresponding to fYi and fZi, 
respectively. 

If independence among the random variables associated with each decision is 
assumed for n possible sensor outputs, labeled X1 through Xn, then for output Xk: 

 ∫ ∏ ∫
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where the density and cumulative functions correspond to a true target type of ti. 

Equations (3)–(5) all address the case where a sensor decision must be made. 
There are several ways to include the possibility of “no declaration.” For example, one 
can require the “winning” signal Xk not only to be the largest, but to also exceed a 
threshold value α, 

 Xk ≥ Xj and Xk ≥ α for all k ≠ j. (6) 

Signals that fail to satisfy this requirement yield a no-declaration designation. A 
natural choice for the threshold α is to require signals less than or equal to α to capture a 
prescribed fraction, p(α), of the probability density function (PDF) of the true target,  

 ∫
∞−

==
α

αα dxxfFp
kk XX )()()( . (7) 

Users requiring high confidence in making correct target assignments might set p 
to a high value (say p = 0.5); users wishing to force decisions, but not requiring high-
confidence decisions, would conversely set p to a low value. The threshold-conditioned 
confusion matrix entries are found by replacing the lower limits on the integrals in (3), 
(4), and (5) by the threshold value α. In the event that the Xk variables are independent, it 
can be shown (see appendix, Section A-1) that the no-declaration probability is given by 
the simple, and generally obvious, expression 

 ∏
=

=
n

j
Xi j

FTNDP
1

)()|( α . (8) 

Alternatively, one can require the winning signal to exceed all other signals by a 
designated amount ε, 
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 Xk ≥ Xj + ε, for all k ≠ j. (9) 

For example, one could choose ε to be a measure of the intrinsic noise in the 
signal x (e.g., ε equals one standard deviation), thus increasing the confidence that the 
winner is not a statistical outlier. When imposing condition (9), the confusion matrix 
entries are found by setting the upper limits of the interior integrals (all integrals except 
for the final integral over xk) in (3), (4), and (5) to x − ε. 

Finally, one could require that the winner both exceed a threshold α and exceed 
all other signals by ε, that is, 

 Xk ≥ Xj + ε and Xk ≥ α for all k ≠ j. (10) 

In this case the confusion matrix entries are found by setting all lower limits to α 
and all interior integral upper limits to x − ε in (3), (4), and (5). 

In summary then, all we need to know is the joint distribution fTi(x, y, z,…) or, if 
independence applies, fX(x), fY(y), fZ(z),…, to in principle compute the conditional 
probabilities associated with the probability matrixes, regardless of whether the 
confusion matrices do or do not include a no-declare column. A later section will discuss 
the exact conditions required for independence. 
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III.  TARGET REPRESENTATIONS 

An HRR radar measures the radar return from various range bins along the length 
of a target. An RDI radar determines the returns from various range/cross-range bins.3 
Figure 4 shows a simplistic representation of the relative magnitudes of the radar energy 
returned by the scatterers associated with a hypothetical target for both RDI and HRR.4 
The two-dimensional pattern represents the results of the RDI measurements. The one-
dimensional pattern at the bottom represents the cross-range sum of the relative intensity 
of all of the scatterers in a given range bin.5 The two-dimensional pattern represented in 
Figure 4 contains 30 × 30 = 900 separate relative RCS measurements over a target. The 
assumed RCS values for each of these range/cross-range bins are not shown, but the 16-
level color scale illustrates how the intensities vary across the target. The rectangular box 
of numbers in Figure 4 does show the cross-range sum of all of the RCS values in a range 
bin. The color bar at the bottom of the figure shows the relative intensities of the 
resulting one-dimensional profile, again on a 16-level color scale.6 

We wish to represent the one-dimensional pattern of relative intensities as a 
vector called S1D. That is, S1D = (2, 22, 4,…, 2)T, where the superscript T indicates the 
transpose operation. In a similar manner, the relative intensities of the 900 two-
dimensional returns could be recorded in a two-dimensional table, or they could just as 
easily be arranged in the form of a 900-element one-dimensional vector. For reasons that 
will become apparent shortly, we wish to represent two-dimensional targets using the 
latter form. 

 

                                                 
3 An RDI radar directly measures target returns in a polar pattern; interpolation is then required to 

generate a return pattern on a rectangular grid [2]. 
4 In reality, an actual target will likely have several scatterers within a given range or range/cross-range 

bin, so the radar return received for each radar bin will likely vary as the viewing geometry changes. 
5 A straight summation of the radar cross section (RCS) associated with the various two-dimensional 

scatterers is also not totally correct, because there would be varying phase cancellation across a one-
dimensional range bin as the viewing angle changes. This assumption is made at this point merely to 
facilitate the initial description of our approach. 

6 The white regions represent the brightest regions in the two-dimensional and one-dimensional grids; 
however, these two-dimensional and one-dimensional white regions have different RCS values. 
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Figure 4.  Simple Target Representation 

Either the one-dimensional or two-dimensional target-characterization vectors 
could be normalized to one. Although not strictly necessary, we believe this 
normalization facilitates the analysis and helps in visualizing the computational process. 
Furthermore, normalization of the vectors will make the target templates (as defined by 
the one-dimensional or two-dimensional vectors) independent of the range between the 
radar and the target. 

The foregoing discussion introduced the idea of representing a target as a one-
dimensional or two-dimensional pattern of relative intensities or RCS values. Instead of 
reporting the relative RCS (or energy or signal power) for each of the bins, a radar could 
report the voltage associated with each bin. In reality, a radar will receive a waveform 
that contains both magnitude and phase. If the radar reports only the magnitude of the 
received signal, the elements of the target report vectors consist of a series of real, 
positive numbers. Alternatively, a series of complex numbers could be used to represent 
both the magnitude and phase of the received signal. 

While an actual radar would measure the elements of the appropriate one-
dimensional or two-dimensional vector, each component in the vector would include 
some noise, as follows: 

 Z = S + N (11) 

where Z is the received signal recorded by the sensor, S is the vector of complex voltages 
received from the target when the noise is zero, and N is a noise vector of complex 
voltages that specifies the amount of noise added to each component of S. We will make 
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the standard simplifying assumption that all of the components of N are zero-mean, 
normally distributed random variables, and that each component has an identical standard 
deviation, σ, for both the real and imaginary parts of each component. Hence, the 
expected value of Z (which we denote as < Z >) equals S, and the covariance matrix of Z 
equals 2 σ2I, where I is the identity matrix with the number of rows and columns equal to 
the number of components in Z. In mathematical notation: 

 < Z > = S and < Z ZH > – S SH = 2 σ2I = < N NH > (12) 

where H indicates the Hermitian adjoint or conjugate transpose, since the elements of Z 
and S are assumed to be complex. The appendix (Section A-2b) provides proofs of these 
relationships. The factor of 2 appears in (12) because both the real and imaginary parts of 
each component of N are assumed to have a standard deviation of σ. It is easily shown 
(see Section A-3 and below) that the magnitudes of the components of the noise vector N 
have a Rayleigh distribution, and the magnitudes of components of the noisy target 
vector Z have a Rician distribution (see Section A-4).  
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IV.  MATHEMATICAL PROCEDURES FOR TARGET 
RECOGNITION 

As mentioned before, the ideal confusion matrix is the identity matrix (if the “no 
declare” column is eliminated). Therefore, one wants to maximize the probability of 
declaring that a target return indicates a target of type X when the underlying target is 
also of type X. Brennan and Reed [4] provided a matched filter formulation that 
maximizes the signal-to-noise ratio (SNR) when the actual target being observed, Z 
(where Z = S + N), and the target template, S, agree. Intuitively, this would seem to 
produce maximum values along the diagonal of the confusion matrix.7 Brennan and Reed 
show that the maximum SNR obtainable for a target occurs when 

 SNR = SNRmax = SH M-1 S  (13) 

where M is the noise covariance matrix. For our assumed noise, see (12), M = 2σ2 I. The 
inverse of M is M-1 = I / (2 σ2). Considering only unit vectors (i.e., |S| = 1), then SNRmax 
= 1 / (2σ2), since SHS = 1. For (13) to apply, the elements of the complex vector S must 
have units of voltage. The perceived SNR for an actual observation vector, ZX = SX + N, 
against a test target, SX, becomes 

 SNRXX = SX
H M-1 ZX  (14) 

where SNRXX is a random variable, because ZX is a random variable. Likewise, when 
testing against template ST, the expected value of SNRXT is 

 < SNRXT > = < ST
H M-1 (SX + N) > = ST

H SX / (2σ2) (15) 

because < ST
H M-1 N > = ST

H M-1 < N > = 0.  

Figure 5 illustrates the application of (14) and (15). This figure represents the 
expected real and imaginary components of the complex values SNRXX and SNRXT. 
Because SX

HSX = 1, the expected value < SX
HZX > has real and imaginary components of 

1 and 0, respectively. For a randomly chosen ZX, SX
HZX and ST

HZX will typically lie 
somewhere away from the expected positions of the phasors shown in Figure 5, 

                                                 
7  Alternatively, one could view the problem as one of maximizing likelihood ratios and similarly 

calculate a decision statistic. 
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depending upon the value of σ. Figure 5 also illustrates two possible ways to determine 
whether ZX better corresponds to either SX or ST. In one case we compare the magnitudes 
using 

 |SX
H ZX| > |ST

H ZX|. (16a) 

In the other case we compare only the real parts using 

 Re(SX
H ZX) > Re(ST

H ZX). (16b) 

If the inequalities are satisfied, then one could conclude that ZX  more closely 
corresponds to SX than to ST. From Figure 5, it appears that (16b) should outperform8 
(16a), although both should do well when the SNR is high, that is, σ → 0. However, 
(16b) is sensitive to one’s ability to determine the absolute phase of ZX. By absolute 
phase we mean determining the phase of the first component of the vector ZX correctly 
and then determining the phase of all other components of ZX relative to this first 
component. But when the SNR is low (and when the ability to make accurate 
discriminations is most desired), accurate absolute phase measurements become most 
difficult. In fact, if every component of the vector ZX is rotated 180 deg due to an 
absolute phase measurement error, then the real-part-decision criterion would produce a 
reversed decision. On the other hand, the magnitude-comparison criterion would be 
unaffected by the absolute phase-measurement error. Therefore, in the remainder of this 
paper we will examine in detail the application of magnitude comparisons as defined by 
(16a). 

SX
HZX

ST
HZX

Magnitude 
comparison

Real part comparison Re

Im

SX
HZX

ST
HZX

Magnitude 
comparison

Real part comparison Re

Im

 
Figure 5.  Depiction of Expected Values of Test Statistics in the Complex Plane and 

Possible Comparisons Between Them 

                                                 
8  As we were finalizing this paper, a colleague, Amnon Dalcher, pointed out that the real-part 

comparison is theoretically best when the inherent target magnitude is known while the absolute-value 
comparison is best when the inherent target magnitude is not known. 
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The foregoing reasoning gives the procedure for calculating the entries in a 
confusion matrix, namely: 

• Assume a target of type i with template Si such that Zi = Si + N. This assumes 
that the true target template is known perfectly. This also assumes that Si

HSi 
= 1 such that <|Zi|> =1.  The impact of these assumptions could be explored 
by analyzing a number of real-world cases. 

• Compute the inner (dot) product of Zi with each of the possible target 
templates, Sj, to form a test statistic |Tij| = |Sj

H Zi|, where |Tij| is a random 
variable. The test statistic involves a magnitude, since Tij is generally a 
complex number. 

• Determine the value of each confusion matrix entry by evaluating the 
probability expression P(declare j | target i) = P(|Tij| > |Ti1|, |Ti2|,…, |Tik|,…) 
for all k ≠ j. 

Since the random vector Zi appears in each of the random variables Tij, there are 
cross correlations among the Tijs. As a result, one would typically have to employ (3), 
instead of the more tractable (4) or (5). The degree to which the Tijs (and hence the |Tij|s) 
are correlated is found from the joint expectation of Tij and Tik or, more generally, the 
covariance matrix, defined by 

 )()( * ><−><−= ikikijijjk TTTTC . (17) 

In the appendix [see Section A-5, (A26)] it is shown that the covariance matrix is 
given by Cjk = 2σ2Sk

HSj.9 This implies there will be little correlation of the test statistics 
if the underlying target templates differ significantly (i.e., if |Sk

HSj| << 1, except when j = 
k). The more orthogonal the target templates, the less risk one has in employing (4) or 
(5)—equations that assume statistical independence among all the test statistics. 

                                                 
9 Note that the covariance matrix of the complex values Tij does not depend on the true target Si. We 

later show, however, that the covariance matrix of the magnitudes |Tij| does depend on the true target.  
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V.  EXAMPLE CASES 

In this section, we present several example cases that illustrate the theoretical 
development outlined above. We begin with the coherent processing case even though in 
practice noncoherent processing is generally more predictable. The coherent case, 
especially when the targets are not correlated, yields a rather simple formulation. It also 
illustrates possible upper bounds, assuming one is able to measure the relative phase 
among the components of a target template. Our use of (16a), however, means that our 
coherent processing results do not require an absolute measurement of target phase; that 
is, our coherent process is insensitive to an absolute phase rotation of all elements in the 
measurement vector as might occur at low SNR when determining phase becomes 
especially difficult. 

A. UNCORRELATED TARGETS—COHERENT PROCESSING 

This case treats the ideal situation where all pairs of target templates have zero 
inner product (no overlap). Although this condition is not likely to occur in practice, we 
believe it is worthwhile to examine this case because the no-overlap condition could be 
approximately met in some cases. The independent target case also establishes the “best 
case” confusion matrix for a set of targets.10 Let there be n mutually orthogonal targets 
denoted by Si , i = 1, 2,…, n. As in Chapter IV above, the test signal associated with 
target i is assumed to be Zi = Si + N, where N is a complex, zero mean, Gaussian noise 
vector. Consider a given row i of the confusion matrix; this is the row associated with the 
true target Si. There are then n complex random variables of interest, given by Tik = Sk

HZi, 
k = 1, 2,…, n. For notational clarity, in the remainder of this example we will suppress 
the true target subscript i, that is, Tik–>Tk. Because the targets are orthogonal, the 
covariance matrix is diagonal, that is 

 jkkkjjjk TTTTC δσ=><−><−= 2* 2)()(  (18) 

                                                 
10  By best case, we mean the highest probability of correct target recognition for a given SNR. 
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and the random variables Tk are independent. Because the Tk are independent, their 
magnitudes, Rk = |Tk|, are also independent, with joint expectation [see Section A-4, 
(A27)] given by 

 jkkj RR δσ+>=< )21( 2 . (19) 

Accordingly, the joint density of the Rks factors,  

 )(...)()()...,,,( 221121 nnn RfRfRfRRRf = . (20) 

All that is needed are expressions for the individual densities fk on the right-hand 
side of (20). In the appendix (Section A-5) it is shown that for k = i (if the template 
matches the true target), fk is a Rician probability density; otherwise, fk is a Rayleigh 
probability density, 
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By applying (5), the confusion matrix entries for a given row can then be 
computed. We first recognize that neither PDF in (21) contains any parameters of the true 
target Si—only the noise parameter σ is present. It follows that one need only to compute 
the matrix elements for a single row. Further, from the structure of (5) it is clear that 
there are just two unique matrix elements: all k = i (diagonal) elements are the same, and 
all k ≠ i (off-diagonal) elements are the same.11 This makes sense intuitively because the 
mutual orthogonality of the targets prevents information from target i being gained by 
comparing it (dotting it) with target k. Finally, since the rows of the confusion matrix 
sum to one, and the off-diagonal elements are the same, the off-diagonal elements can be 
computed once the diagonal element is known. Therefore, there is just one integral to 
compute, the diagonal matrix element, given by 

 dRduueIeRP
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 (22a) 

                                                 
11 This assumes square confusion matrices that do not contain a no-declare column. If a no-declare 

column were included, the limits in the ensuing integrals would have to be adjusted accordingly. Also, 
it assumes that the σs are all the same for each true target type, which may not always be a reasonable 
assumption, as discussed in Chapter VI. 
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which follows from (22a) by expanding the result of the interior integral as a binomial 
and applying the integral  

 α
β

∫
∞

α
α− =β 4

2
2

0
2
1

0 )( edRRIeR R  (22c) 

to the result [5]. The off-diagonal elements are given by the simple expression 

 
1

1 diag
diag off −

−
=

n
P

P . (23) 

This yields the surprising result that the independent-target, coherent-processing 
case gives rise to a universal confusion matrix, whose elements are independent of the 
details of the individual targets. 

Figure 6 shows a plot of the diagonal matrix element, (22), as a function of the 
SNR: SNR = 1/(2σ2), for n = 2, 5, 10, and 20 targets. As the SNR approaches zero, Pdiag 
approaches 1/n; in this limit, the off-diagonal elements (23) equal the diagonal element, 
and there is equal probability of identifying any one of the targets as the true target. As 
the SNR increases, Pdiag approaches one; correspondingly, the off-diagonal elements all 
approach zero. 

 

Figure 6.  Diagonal Matrix Element as a Function of SNR for Independent Targets 
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B. CORRELATED TARGETS—COHERENT PROCESSING 

In practice, there will always be overlap between targets.12 For each true target Si, 
one is then confronted with a set of n correlated complex random variables Tik = Sk

HZi, k 
= 1, 2,…, n with covariance matrix Cjk = 2σ2 Sk

HSj and the corresponding correlated 
magnitudes Rik = |Tik|. Here and throughout this section the true target subscript i is 
retained. To compute confusion-matrix entries, one must use the general probability 
relation given in (3); however, a prerequisite is the joint PDF of the magnitudes, fi(Ri1, 
Ri2,…, Rin). We show in the appendix [Section A-5, (A33)] that the PDF for each 
amplitude Rik is given by the Rician density 

 )()( 2

2

22

0
2

)(

2 σ
σ

σ
ikik

ikik
cR

cR
ik

ikik IeRRf
+

−
=  (24) 

where cik=| Sk
HSi |. To construct the exact joint PDF of the correlated Rician random 

variables, the second-order correlations, <Rij Rik>, and all higher order correlations are 
needed. Unfortunately, to our knowledge, neither these correlations, nor the joint PDF 
itself, can be computed in closed form [6]. 

In spite of this, an approximate joint PDF can be constructed in the high signal-to-
noise limit (i.e., when σ/cik <<1). In this limit, the Rician PDFs in (24) are well 
approximated by Gaussian PDFs (see Section A-4 for justification), and the joint PDF is 
well approximated by a multidimensional Gaussian of the form [7] 
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 (25) 

where T
iniii RRR ),...,,( 21≡R , ii R=µ , and Ki is the covariance matrix of the amplitudes. 

The components of the mean vector can be computed exactly from the mean of a Rician 
random variable (see Section A-4): 

 ⎥⎦
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⎡ ++>=<
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cccc

c

ik IIeR  (26) 

where I0 and I1 are the zeroth and first-order modified Bessel functions of the first kind.  

The elements of the covariance matrix for true target Si are given by 

 >><<−>=<><−><−≡ ikijikijikikijijjk RRRRRRRRiK ))(()( . (27) 

                                                 
12 A judicious choice of target vectors could conceivably help reduce the overlap between targets, 

however. This topic is taken up in Chapter VI.  
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The diagonal (j = k) elements of the joint expectation of Rij and Rik can be 
computed exactly [see (A21)]: 

 222 2σ+>=< ijij cR . (28) 

Although it is not possible, to our knowledge, to compute the off-diagonal 
elements of the joint expectation of Rij and Rik exactly, a lengthy but straightforward 
calculation (see Section A-5) shows that to order σ2, the joint expectation is given by 

 ( ))cos(2
2

22
2

kjikijkjikijikij
ikij

ikijikij ccccc
cc

ccRR φφφσ
−−+++≈><  (29) 

where the phases are defined though the relations ij
j

i
iji

H ec φ=SS , ik
k

i
iki

H ec φ=SS , and 
kj

j

i
kjk

H ec φ=SS .13 With the mean and covariance in hand, the confusion matrix entries for 

high signal to noise can be estimated by numerically integrating (3), using the joint PDF 
(25), repeated here using the notation of this section: 
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We give here an example with the simplest possible case of two targets, S1 and S2. 
This case leads to several simplifications. First, there is only a single off-diagonal 
element in the covariance matrix (27). Further, the joint expectation (29), and therefore 
the covariance matrix (27), does not depend on the phases. For true target S1 (i = 1) (29), 
reduces to 

 ( )2
12

12

2

121211 31
2

c
c

cRR ++=><
σ  (31) 

again valid to order σ2. An expression for the mean of a Rician in the high SNR limit is 
derived in the appendix. Applying this expression to R11 and R12 yields 

 
2

1
2

11
σ

+=>< R  (32a) 

 
12

2

1212 2c
cR σ

+>=< . (32b) 

By combining (27), (28), (31), and (32) and simplifying, we arrive at a simple 
approximate expression for the covariance matrix associated with true target S1: 

                                                 
13 Note that for  j= k (diagonal elements), expression (29) is exact and reduces to the result in (28).  
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It is evident that the covariance matrix, K2, associated with target S2, is obtained 
by interchanging the diagonal elements of K1. Because of the symmetry of the two-target 
case, the diagonal elements of the confusion matrix are identical, as are the off-diagonal 
elements. Within the Gaussian approximation, there are then just two parameters that 
define the two-target case—the magnitude of the target correlation, c12=| S2

HS1 |, and the 
noise strength σ.14 

Figure 7 shows the diagonal element of the two-target case, that is, the probability 
of correct target identification, computed from the Gaussian approximation (30), as a 
function of SNR = 1/(2σ2) for four values of the target correlation: c12 = 0.3, 0.5, 0.7, and 
0.9. For comparison, the independent target result, (22), is also shown. Also plotted are 
simulated results for two two-dimensional complex templates with correlations 0.3, 0.5, 
0.7, and 0.9.15 Simulations were performed by sampling the signal vector 100 000 times, 
projecting each onto the 2 templates vectors, and computing the fraction of cases when 
one projection exceeds the other. The agreement between the Gaussian approximation 
and simulated results is seen to improve with increasing SNR and for increasing 
correlation. Because the Gaussian approximation holds only for high SNR, the Gaussian 
approximation curves in Figure 7 are limited to SNR values that correspond to the 
condition σ/c12 < 1.5. It is apparent from the figure that the probability of correct target 
ID diminishes with increasing target correlation and that a high degree of target 
correlation (e.g., c12 = 0.9) degrades the probability significantly from the independent 
target result (roughly 20 percent for an SNR = 10).  

                                                 
14 It can be shown that the two-target case depends only on c12 and σ for the entire range of SNR values.  

15 The template vectors were taken to be ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
1

2
1

1S  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α−
α

= θie22 1
S . Overlap values of 0.3, 0.5, 

0.7, and 0.9 can be obtained with parameter pairs (α, θ) = (0.4756, 2.9413), (0.2645, 2.9413), (0.0102, 
2.9413), and (0.7071, 0.9021), respectively.  
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Figure 7.  Diagonal Matrix Element as a Function of SNR for Two Correlated Targets 

C. CORRELATED TARGETS—NONCOHERENT PROCESSING 

An alternative approach to the coherent processing case is to represent all target 
templates as real vectors by retaining only the magnitudes of the components of the 
normalized complex templates Si above. The real template vectors are denoted by  

 T
imii

T
imiii sssaaa |)|,...|,||,(|),...,,( 2121 ==A ,  

 i = 1, 2,…, n, (34) 

where m is the number of components of Si. Since the Si are normalized according to 
Si

HSi=1, the Ai are automatically normalized according to Ai
TAi=1.  

Similarly, signal vectors are represented by vectors whose components are the 
magnitudes of the components of the complex vector Zi = Si + N . Hence, signal vectors 
are represented by 
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 i = 1, 2,…, n. (35) 

In radar parlance, this is known as noncoherent processing. As discussed 
previously, each component of Yi is a Rician random variable with PDF 
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To compare template Ak with true target Yi, we form the inner product16 

 ∑
=α

αα==
m

iki
T

kik yaw
1

YA  . (37) 

For each true target, we are again confronted with a set of n correlated random 
variables wik, k = 1, 2,…, n. Again, the joint PDF is desired, but it is impossible to 
compute in closed form. An approximate method for obtaining the joint PDF is presented 
in the following. Since each component of Yi is a Rician17 random variable, wik is a 
strictly positive weighted sum of Rician random variables. By the central-limit theorem, 
as the number of components, m, of Yi increases, the density function of wik approaches a 
Gaussian. Similar to the coherent case above, we again seek a joint PDF in terms of a 
multidimensional Gaussian  

 ))()(exp(
)det()2(

1)( 1
2
1

iiiii ζζ
π

−−−⋅= − www i
T

i
ni Q

Q
f  (38) 

where T
iniii www ),...,,( 21=w , >=< ii wζ , and Qi is the covariance matrix for the random 

variables wik. The mean vector ζi can be computed exactly with the help of (26). In the 
appendix [Section A-6, (A55)] we show that the covariance matrix Qi can be computed 
exactly: 

 ∑
=

=>><−><−≡<
m

kijikikijijjk aawwwwiQ
1

2))(()(
α

ααασ  (39) 

where 222 ><−>=< ααασ iii yy  is the variance of the Rician random variable yiα , an 

expression for which is given in the appendix (Section A-4). Finally, the confusion 
matrix entries can be found by employing the general probability expression in (3). Note 
that each true target Ai (ith row) is associated with a distinct joint density fi. We proceed 
with a numerical example to illustrate the method.  

Figure 8 shows images of three target templates, fashioned to resemble simple 
plan views of three (admittedly bizarre) aircraft. The targets are represented by 4 × 5 
matrices, given by 

                                                 
16  We will first follow the same recipe as just developed for the coherent case.  However, we will then 

demonstrate that some difficulties can arise at low SNR values. These difficulties ultimately lead to an 
alternative formulation that eliminates the low-SNR problems. 

17  Some of the terms in Yi will correspond to Rayleigh random variables, but the Rayleigh is merely a 
special case of the Rician. 



 

 V-9 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

00000
00100
22122
00000

18
1,

00100
11011
00100
11011

10
1,

00100
11111
00100
01110

10
1

321 AAA . (40) 

 

Figure 8.  Three Hypothetical Templates Represented by Matrices in (40) 

The lighter shading in the figure represents the larger matrix entries. Each 
template can be recast as a 20-dimensional vector. The matrix of inner products between 
all templates is then given by  
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Consistent with Figure 8, there is significant overlap between targets 1 and 2, less 
overlap between targets 1 and 3, and very little overlap between targets 2 and 3. 

We first examine pairwise target comparisons, starting with targets 1 and 2 in 
Figure 8. Figure 9 shows a plot of the matrix element P11 of the 2 × 2 confusion matrix as 
a function of SNR = 1/(2σ2), both with the Gaussian approximation in (38) (solid) and 
with direct simulation (open circles). Simulations were performed by sampling the signal 
vector, with A1 as the true target, 100 000 times, projecting each onto the two templates 
vectors A1 and A2, and computing the fraction of cases when one projection exceeds the 
other. The good agreement between the Gaussian approximation and simulated results 
justifies the use of the Gaussian approximation for these 20-dimensional target templates. 
The matrix element P22 exhibits essentially identical behavior; good agreement between 
the Gaussian approximation and the simulated results is also observed. Shown for 
comparison in Figure 9 is the simulated two-target coherent case with an overlap of 0.8. 
As expected, the coherent result outperforms the noncoherent result, particularly for low 
SNRs. 
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Figure 9.  P11 vs. SNR for Pairwise Comparison of Targets 1 and 2 in Figure 8 

Figure 10 shows the confusion matrix elements P11 and P33 as a function of SNR 
for the pairwise comparison of targets 1 and 3 shown in Figure 8. Displayed in the plot 
are the confusion matrix elements computed with the Gaussian approximation and with 
direct simulation, as in the creation of Figure 9. Again, the Gaussian approximation is 
seen to agree well with the simulated results. Also shown is the simulated two-target 
coherent case for an overlap of 0.15. Unfortunately, the noncoherent results in Figure 10 
make no sense. At very low SNR values, one would expect that targets 1 and 3 would be 
indistinguishable and each would be selected with a 50-percent probability when 
choosing only between these two targets. 

The explanation for this behavior is as follows. It is shown in the appendix (A19) 
that for small A/σ (low SNR), the mean of a Rician approaches 2

πσ  (this is the mean of 
a Rayleigh random variable). Therefore, the expected measured-signal vector approaches 

2
πσ  (1,1,…, 1)T. It follows from the definition of wik in (37) that the template Ak, whose 

components sum to the largest value, will yield the largest projection (alternatively, the 
template that “looks” most like the (1,1,1,…,1)T vector “wins”). Consequently, the 
probabilities associated with this template will be skewed to larger values. In the case of 
targets 1 and 3, the component sums are 10 = 3.16 and 1810 = 2.36. This explains why, 
in Figure 10, as SNR decreases, P11 is abnormally large and P33 is abnormally small. In 
each case the projection onto target 1 is consistently larger than the projection onto target 
3. We emphasize that this effect is a natural consequence of applying the projection 
methodology to noncoherent processing—it is not an artifact of the Gaussian 
approximation technique outlined above. Similar results are observed when targets 2 and 
3 are compared, with target 2 “winning” as the SNR decreases (the component sum for 
target 2 is the same as for target 1).  
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Figure 10.  P11 and P33 vs. SNR Pairwise Comparison of Targets 1 and 3 in Figure 8 
Demonstrates a Flaw in our Direct Use of a Linear Process 

Although the foregoing discussion explains why the bizarre result depicted in 
Figure 10 occurs, this limitation seems rather unsatisfying. Therefore, upon further 
reflection, we realized that the problem actually lay in our representation of the target 
templates.18 We really need to define target templates that represent the expected return 
when observing a target.19 Hence the target templates for the noncoherent case need to be 
defined as follows: 

 ( )T

mjmjjj nsnsns >+<>+<>+<= ...,,, 2211A . (42) 

The terms in (42) are the means of Rician processes such that <|sjk + nk|> = f(sjk, 
nk) >sjk, where f(sjk, nk) indicates that the mean of a Rician process is a function of both 
the signal sjk and the noise nk. For large SNR, <|sjk + nk|> —>sjk , and for small SNR, <|sjk 
+ nk|> = σπ

2 . Obviously, this means that the target templates must vary with SNR. The 

appendix (Section A-4) shows how to calculate exactly the means of the Rician random 
variables. While we have used this exact calculation in developing the ensuing 
illustration, a reasonable numerical approximation we have empirically derived (i.e., 
within ~ 1 percent) is as follows: 

 ( ) ( ) )25.2
1(25.225.2 2 ⎥⎦

⎤
⎢⎣
⎡ +>≈+< kjkkjk sns σπ . (43) 

                                                 
18  An analogous issue occurs in noncoherent detection theory, which uses a square law, as opposed to a 

linear, detector when the SNR is low. 
19  Without directly thinking about it this way, that is exactly what occurs in the coherent case because the 

noise is zero-mean Gaussian. 
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Based on these considerations, the target 1 and 3 templates for SNR values of 1, 
4, and 10 are shown in Table I. 

Table I. SNR-Dependent Noncoherent Target Templates 

Target 1 Templates Target 3 Templates

SNR = 1

SNR = 4

SNR = 10

0.886 0.930 0.930 0.930 0.886
0.886 0.886 0.930 0.886 0.886
0.930 0.930 0.930 0.930 0.930
0.886 0.886 0.930 0.886 0.886

0.443 0.528 0.528 0.528 0.443
0.443 0.443 0.528 0.443 0.443
0.528 0.528 0.528 0.528 0.528
0.443 0.443 0.528 0.443 0.443

0.280 0.405 0.405 0.405 0.280
0.280 0.280 0.405 0.280 0.280
0.405 0.405 0.405 0.405 0.405
0.280 0.280 0.405 0.280 0.280

0.886 0.886 0.886 0.886 0.886
0.982 0.982 0.911 0.982 0.982
0.886 0.886 0.911 0.886 0.886
0.886 0.886 0.886 0.886 0.886

0.443 0.443 0.443 0.443 0.443
0.621 0.621 0.491 0.621 0.621
0.443 0.443 0.491 0.443 0.443
0.443 0.443 0.443 0.443 0.443

0.280 0.280 0.280 0.280 0.280
0.529 0.529 0.353 0.529 0.529
0.280 0.280 0.353 0.280 0.280
0.280 0.280 0.280 0.280 0.280

Target 1 Templates Target 3 Templates

SNR = 1

SNR = 4

SNR = 10

0.886 0.930 0.930 0.930 0.886
0.886 0.886 0.930 0.886 0.886
0.930 0.930 0.930 0.930 0.930
0.886 0.886 0.930 0.886 0.886

0.443 0.528 0.528 0.528 0.443
0.443 0.443 0.528 0.443 0.443
0.528 0.528 0.528 0.528 0.528
0.443 0.443 0.528 0.443 0.443

0.280 0.405 0.405 0.405 0.280
0.280 0.280 0.405 0.280 0.280
0.405 0.405 0.405 0.405 0.405
0.280 0.280 0.405 0.280 0.280

0.886 0.886 0.886 0.886 0.886
0.982 0.982 0.911 0.982 0.982
0.886 0.886 0.911 0.886 0.886
0.886 0.886 0.886 0.886 0.886

0.443 0.443 0.443 0.443 0.443
0.621 0.621 0.491 0.621 0.621
0.443 0.443 0.491 0.443 0.443
0.443 0.443 0.443 0.443 0.443

0.280 0.280 0.280 0.280 0.280
0.529 0.529 0.353 0.529 0.529
0.280 0.280 0.353 0.280 0.280
0.280 0.280 0.280 0.280 0.280

 

When processing variable target templates such as these using (37), one obtains 
the results shown in Figure 11. As before, the simulated results come from averaging the 
results of 100 000 trials at each SNR value. 

Using this revised template definition process, Figure 11 shows that the decision 
between targets 1 and 3 becomes 50–50 at low SNR values. Also, the results parallel, but 
fall below, the curve obtained for coherent processing with a target template correlation 
of 0.15. Although the above method will work when developing confusion-matrix 
probabilities for noncoherent processing, the practical implementation of these SNR-
dependent templates will necessitate estimating the noise. This could be accomplished by 
averaging the returns for elements of the original template where the RCS is zero (e.g., 
elements outside the extent of the target). In these regions, the Rayleigh distribution 
applies, and the value of the noise parameter can be observed directly. 
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Figure 11. Corrected Results of P11 and P33 vs. SNR with Revised Templates for 
 Targets 1 and 3 
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VI.  PRACTICAL CONSIDERATIONS 

This section discusses a few practical issues associated with implementing the 
computations discussed above. 

A. UNCERTAINTIES ASSOCIATED WITH COHERENT PROCESSING 

Section V began with a discussion of a target-processing scheme that involved 
target template and measurement vectors that contain complex terms to represent the 
relative phase between positions in the vectors. Although magnitude processing is 
insensitive to absolute phase-measurement errors, it still requires extremely precise 
knowledge of the viewing angle of the target, as well as significant uniformity among the 
various actual targets being represented by a target template vector. Neither of these 
conditions will consistently occur in practice. For example, if one considers the two-
scatterer situation depicted in Figure 12, then the relative phase between a return from 
each of the individual scatters varies as follows: 

 
( )

( )Θ−π=
πλω

Θ−λω
=

∆
ω=∆ω=∆Φ

cos14
2/

cos122

N

N
c

dt
. (44) 

 Θ=
Θ

∆Φ sin4 N
d

d π . (45) 

 

Figure 12.  Longitudinal Phase Difference Geometry 

For example, for two scatters separated by 1 meter at X band (1010 Hz), N = 
100/3, so the variation in Φ as Θ varies approximately equals 420 Θ when the angle Θ is 
small. Hence, even a small uncertainty in the viewing angle Θ results in a large change in 
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the relative phase, even though the apparent difference in the relative positions of the 
scatters would be imperceptible.  

B. TARGET SCINTILLATION EFFECTS 

If a range bin contains multiple scatterers, then the received HRR signal will vary 
as the viewing angle changes. Figure 13 shows the simplest case of only two scatterers in 
the same range bin separated by a distance of nλ. With respect to the centroid of the two 
scatterers, the relative phase from the individual scatterers is given by 

 ( )
Θ≈Θ=

Θ
=

∆
=∆=∆Φ nnn

c
dt ππ

πλω
λωωω 2sin2

2/
sin2/22  (46) 

so the received signal becomes 

 tntt ωπωω sin)]2cos(2[)sin()sin( Θ=∆Φ−+∆Φ+ . (47) 

 

Figure 13.  Scintillation Geometry 

At X band for this simple case of two scatterers in the same range bin separated 
vertically by 1 meter, the amplitude of the received signal varies with angle as shown in 
Figure 14. The amplitude of the sine term in (47) depends greatly on the angle Θ. 
However, if two range bins separated longitudinally by an arbitrary distance happen to 
both have two scatterers separated by 1 meter, then the relative difference in magnitude 
between these two range bins would not vary with the angle Θ. Of course, as the 
amplitudes approach zero (i.e., [2 cos(2 π n Θ)]  0), one’s ability to recognize that the 
returns are equal will disappear as noise becomes comparable in magnitude to the signal. 

C. EFFECT OF TOTAL TARGET RETURN ON NOISE VALUES 

The above analyses assumed unit target template vectors (i.e., SX
HSX = 1). This 

was done so the relative angles between the template vectors would provide a direct 
measure of the degree of independence between the individual target templates. 
However, this also means that all the target templates used in building the confusion  
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Figure 14.  Variation in Magnitude of Return as Angle Changes 

matrices assume that all targets are equally bright (or dim). This effect matters most when 
thinking about the various rows in the confusion matrix that correspond to a priori 
assumptions that each of the various targets is being observed. In reality, there can be 
substantial variability in the total brightness of targets (e.g., transport aircraft vs. cruise 
missiles). When making a target observation, we will observe ZX, where ZX = TX + N. 
While we can compute | ZX | directly, we would really like to determine | TX |. However, 
if we can estimate the amount of noise (which we might do by observing returns in 
components of ZX without any target signal present), then we could estimate | TX |. With 
this we could then form 

 
X

X
X

X
X T

NS
T

NT
Z +=

+
=′  (48) 

where SX is now the unit target template. From (48) we see that the noise portion of XZ ′  

varies with the brightness of the target. As the magnitude of the noise varies, the entries 
in the confusion matrices vary (e.g., see Figure 7 or 11). The details of how to address 
this effect are outside the scope of the material we wish to address in this paper. 

D. EVALUATION OF TARGET CLASSES AND TARGET FLUCTUATIONS 

The above formulations have considered that each target will have a unique target 
template. However, situations might arise such as the one depicted in Figure 15, in which 
groups of targets appear highly correlated, but the correlation between the target groups 
is small. For example, one target group could involve two-engine fighter aircraft (e.g., F-
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15, F-18, Mig-29) while another could involve two-engine commercial aircraft (e.g., B-
757, B-767, A-310). In this case, one could form a composite template for each of the 
target groups and then compare measured targets against each of the groups. A simple 
way to do this would be to assume increased noise associated with the target 
measurements so as to include both the actual noise and a dispersion-effect noise that 
addresses the variation among targets within a given class, as shown in Figure 16.20 A 
subset of this problem might involve grouping the various models (e.g., F-15C, F-15E) or 
configurations (e.g., with or without stores) of an aircraft into a composite aircraft 
category (e.g., F-15). This would likely result in less dispersion within such a generic 
airframe category than would occur across a broader class of, say, all two-engine fighters. 
The actual or synthesized target template data and the variations in the individual target 
template dot products among the various targets will have to be examined to determine 
which target groupings make most sense. 

In a similar manner to that shown in Figure 16, one could increase the values for 
the terms in the target’s covariance matrix to account for target fluctuations. In this case 
the terms in the noise covariance matrix would correspond to the sum of the squares of 
standard deviations for both the inherent system noise (e.g., thermal noise) and the target 
fluctuations. 

 

Figure 15.  Formation of Target Class Templates 

                                                 
20 Because there will typically be fewer targets in a class than components in the template vectors, the 

effective noise for the class will no longer appear as a hyper-sphere (despite the depiction in Figure 
15). Hence the noise covariance matrix associated with the target class will become a hyper-ellipse, 
which would necessitate modifications to the formulations shown in Chapter V, beginning with (18). 
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Figure 16.  “Noise” for Target Class 

E. EVALUATION OF NON-ISOTROPIC NOISE 

When the noise covariance is non-isotropic, the results presented in Section 5 
require modification. The noise could be non-isotropic because the nominal target is a 
composite of a number of similar targets, as just illustrated in Figure 15, or due to the use 
of noncoherent processing. For example, with noncoherent processing when the target 
template is ( 1, 0 )T and the SNR equals 1, the expected template is ( 1.545, 1.253 )T and 
the corresponding standard deviations are 0.783 and 0.655. So clearly noncoherent 
processing can lead to ellipsoidal rather than spherical noise matrices. Figure 17 shows a 
generic depiction of this situation.  

The test statistic (14) includes a noise covariance matrix that will therefore adjust 
for non-isotropic noise. The Fisher Linear Discriminant [8] provides an alternative way 
to think about the problem. It allows one to determine the maximum separation between 
two data sets based on the separation between the means of the two populations and the 
combined covariance of the two populations. The Fisher Linear Discriminant is given by: 

 ( )21
1 mmV −= −

cs C  (49) 

where: 

Vs is the vector for maximum statistical separation 

21
1 where)(Inv CCCCC ccc +==−  

C1 is the covariance associated with population 1 

C2 is the covariance associated with population 2 

m1 is the mean of population 1 

m2 is the mean of population 2 
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Figure 17.  Non-isotropic Noise Case 

The Fisher Linear Discriminant uses the inverse of the combined covariance 
matrix to rotate the vector between the population means to produce maximum statistical 
separation. 

Our problem involves deriving the entries in a confusion matrix. For each row of 
the confusion matrix, the true target is presumed to be known. Therefore, we would have 
to modify the Fisher Linear Discriminant process slightly for our needs. Specifically, 
when evaluating a row of the confusion matrix, only one covariance matrix applies (the 
one for the presumed target). The means could then be the locations of the mean for the 
presumed target and the locations of the means for each of the other targets included in 
the confusion matrix. A number of such pair-wise decisions would essentially put a 
hyper-box around the presumed target and the probability of being within that hyper-box 
would define the diagonal term on the confusion matrix. The sides of the hyper-box 
would be defined by the separation vector, Vs, but a constant would need to be set to 
define the location of each of these hyper planes. The constant could be defined so the 
plane passes through the midpoint of the line separating the target means. Alternatively, a 
no-declare buffer region could be established between each target pair to reduce the 
chances of false reports. The off-diagonal terms would be found by calculating the 
probability that the observed return for a target would be outside the hyper-box and 
closer to the other targets.  

F. DISCRIMINATION AMONG TARGETS WITHIN A CLASS 

One might wish to implement a two-stage process in which a target is first 
evaluated against a class (to take advantage of the potentially better orthogonality among 
class templates) and then determine the specific target type within a class. The prior 
section described the approach to the first stage, but a different process appears warranted 
for the second stage. The idea here is to remove as much of the common information 
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from the individual vectors as possible and then test for differences among the resulting 
modified vectors. Figure 18 depicts this process. The left part of the figure shows the 
original arrangement of the target vectors that make up the target class, the composite 
vector used to represent the entire class, and the error ellipse due to sensor noise for one 
of the target vectors. The right part of the figure shows the resulting vectors after the 
composite vector has been subtracted from each of the individual vectors. The resulting 
modified vectors have clearly become more orthogonal. However, if the modified vectors 
are re-normalized, then the noise-error ellipse will become larger as also shown in the 
figure.  

This process has made the problem of discrimination among the individual targets 
within a class amenable to the analysis procedures described above because of the near 
orthogonality of the modified vectors. Because of the renormalization of both the 
modified vectors and the size of the error ellipse, however, the analysis process may 
require substantially higher SNRs to distinguish individual targets within a class. The 
feasibility of this target-type discrimination will therefore depend upon the degree of 
difference among the vectors within a class and the signal-to-noise levels. 

 

Figure 18.  Effect of Removing the Target Class Vector 

G. DEALING WITH A MIX OF HIGHLY CORRELATED AND NEARLY 
UNCORRELATED TARGETS 

One might sometimes encounter a situation similar to the one depicted in Figure 
19. In this case, two of the targets have nearly aligned template vectors (and are therefore 
highly correlated), but the third has a nearly orthogonal template vector (and is therefore 
nearly uncorrelated with the other two). The analysis procedure described in Section V 
generally assumes that the individual target vectors are uncorrelated, that is, f(x, y, z) = 
f(x)·f(y)·f(z). In this case, which involves a mix of highly correlated and nearly 
uncorrelated targets, the joint probability distribution would only partly factor, such that 
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f(x, y, z) = f(x, y)·f(z). Therefore, in this case the general equation (3) could be rewritten 
as 

 dyxFyxfdx

zxyxPTXP

ii T

x

T

i

)(),(

) and ()|(

∫ ∫
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∞− ∞−

=

>>=

 (50) 

because  

 )(),()(),( xFyxfdzzfyxf
iiii TTT

x
T =∫ ∞−

. (51) 

TxTy

Tz

Following dot
products apply:
Tx·Ty ≈ 1
Tx·Tz ≈ 0
Ty·Tz ≈ 0

TxTy

Tz

TxTy

Tz

Following dot
products apply:
Tx·Ty ≈ 1
Tx·Tz ≈ 0
Ty·Tz ≈ 0

 

Figure 19.  Mix of Highly Correlated and Uncorrelated Targets 

This procedure may prove useful if the majority of the targets are uncorrelated 
and only a few are highly correlated. The following provides a formulation for 
representing the joint density of two partially correlated Gaussian random variables: 
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 (52) 

where mx, σx, my, and σy are the mean and standard deviation of the random variables x 
and y and r is the correlation between the two random variables. This is actually the two-
dimensional version of the multidimensional Gaussian, (25), given previously. 

H. EFFECT OF DIMENSIONALITY OF TARGET TEMPLATE VECTORS 

The dimensionality of the target vectors affects the ability to differentiate between 
targets for the noncoherent case for the reasons described below.21 To address this issue, 
consider the simplest case of target vectors S1 = (1 0)T and S2 = (a b)T. 

                                                 
21  The goal here is to offer a simple demonstration of a potential problem rather than to provide a 

rigorous analysis involving the use of SNR-dependent target templates as discussed in Chapter V.C. 



 

 VI-9 

Making |S2| = 1 requires a < 1 and 21 ab −= . The correlation between these 
vectors is S1·S2 = a, and the magnitude of their difference is |S1 – S2| = ( )a−12 . 

Assuming the noise value is ε  << 1, the first component of the expected measurement 
vector of target 1, that is, < Z1 >, can be approximated by 1, and the second component is 
given by σε π

2=  because there is no signal in this measurement bin and the mean of the 

Rayleigh distribution applies. Hence, T) 1(1 ε≈>< Z . In this case 111 =>< SZ T  and 
2

21 1 aaT −+=>< εSZ (noncoherent case), so the dot product between the latter two 

vectors is a function of the SNR. Also note that for coherent processing, < Z1 > = (1 0)T, 
such that 111 =>< SZ T  and aT =>< 21 SZ  (coherent case). 

Hence, the dot product between the expected measurement, < Z1 >, and the 
template S2 varies with SNR for the noncoherent case but is invariant with SNR for the 
coherent case. 

Now to consider higher dimensions (i.e., n dimensions), assume the following 
vectors: 

 S1 = (1 0 0 0 0…0)T and S2 = (a b b b b…b)T, where b = )1/()1( 2 −− na . (53) 

As before, let < Z1 > be the expected return when target S1 is present. This yields 

 < Z1 > = (1 0 0 0 0…0)T for coherent processing and 

 < Z1 > = (1 ε ε ε ε…ε)T for noncoherent processing. 

For coherent processing the dimensionality does not matter if the degree of 
correlation between the templates remains fixed, since  

 111 =>< SZ T  and aT =>< 21 SZ  (coherent case). (54) 

However, for noncoherent processing, one obtains  

 111 =>< SZ T  and )1)(1( 2
21 −−+=>< naaT εSZ . (55) 

Figure 20 shows plots of (55) when a = 0.6 and ε = 0.1. This value of ε 
corresponds to an SNR of 1/2σ2 = 25π. The upper line corresponds to the first dot 
product, which is invariant with the number of dimensions. The second line, which 
corresponds to noncoherent processing, increases as the number of dimensions increases. 
This means that the likelihood of incorrectly recognizing target Z1 as target S2 would 
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increase as the number of dimensions increases.22 Of course, the reason for increasing the 
number of dimensions in the target vectors would be to enhance the ability to 
discriminate between two targets. Figure 21 shows how much decorrelation between the 
targets would be required to keep the chances of confusing target Z1 with target S2 
constant when performing noncoherent target processing. The lower correlation curve in 
Figure 21 begins at a correlation of 0.6 for a two-dimensional case and falls to 0.057 for a 
40-dimensional case. However, this reduced template correlation would lead to reduced 
target confusion if one were to perform coherent processing. In fact, the dot product for 
the coherent case would follow the lowest curve in Figure 21 (i.e., 2121

SZSS T>=<T  in the 

coherent case). Of course, the relationships depicted in Figs. 20 and 21 would change for 
different SNR assumptions (i.e., different values of ε) and target vectors different from 
those assumed in (53), and the vectors in (53) no doubt represent a worse case. For 
example, consider the following noncoherent case: 

 S1 = ( 1 0 1 0 1 0…)T n/2  (56a) 

 S2 = ( 0.6 0.8 0.6 0.8 0.6 0.8…) T n/2  (56b) 

 < Z1 > ≈ ( 1 ε 1 ε 1 ε…) T n/2  (56c) 

where the number of components in each vector is assumed to be even. In this case, the 
correlation between the two templates is given by S1

TS2 = 0.6, and the test statistics 
become < Z1 > T S1 = 1 and < Z1 > T S2 = 0.6 + 0.8 ε. Therefore, although in this case the 
chance of confusing a measurement of target 1 with target 2 does not depend on the 
dimensionality of the vectors, it still depends on the size of the noise terms.  

Both the cases shown in the figures and the numerical example involving (56) 
demonstrate a fundamental difference between the coherent and noncoherent cases and a 
need for caution when considering noncoherent processing. 

 

                                                 
22 The reason that the Z1•S2 curve exceeds one is that our methodology does not include normalization of 

the measured vector, Z1.  Also, because we are evaluating the noncoherent case, we can drop the 
magnitude so, for instance, |<Z1>·S2| = <Z1>·S2. 
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Figure 20.  Effect of Dimensionality on Dot Products (Constant Correlation) 
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Figure 21.  Effect of Variable Correlation on Vector Dot Products 
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VII.  CONCLUSIONS 

This paper provides a basis for the generation of confusion matrices. It 
demonstrates how to use target templates to derive traditional square confusion matrices 
that have identical row and column labels and how to generate rectangular matrices that 
typically include a no-declare, or no-decision, column. The paper suggests alternative 
criteria for generating the no-declare, or no-decision, column. The framework for 
generating confusion matrices presented herein could help ID system developers assess 
issues such as the following: 

• What are the relative advantages of one-dimensional versus two-dimensional 
(or three-dimensional) target imaging? 

• What are the relative benefits of higher versus lower resolution 
measurements (e.g., one-dimensional HRR profiles that use higher 
bandwidth to achieve more samples along the length of a target)? 

• Because one-dimensional HRR profiles will vary depending upon the 
viewing angle of the target, what are the trade-offs involved in having 
separate templates for a few or a large number of different viewing angles? 
(For example, the target returns within a narrow set of viewing angles will 
likely be highly correlated, while those within a wider set of angles will 
begin to become uncorrelated, but will likely have greater variability due to 
scintillation effects.) 

• How worthwhile is it to preserve phase information when generating target 
templates and making target measurements? 

We address the first of these issues through a conventional approach of treating 
any target (template or measurement) as a vector of data points regardless of whether the 
process involves one-dimensional, two-dimensional, or higher diagonal target 
measurements. These vector representations provide a convenient way of understanding 
and evaluating the degree of correlation between targets, which has been shown to be 
directly related to the inner product of the vector representations for the various targets 
(assuming the vector representations have been normalized to one). Moreover, 
representation of one-, two- (or higher) dimensional targets as vectors leads to the 
calculation of the conditional probabilities appearing in the confusion matrices. 
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The paper considers coherent and noncoherent processing and correlated and 
uncorrelated targets. For the case of coherent processing of uncorrelated targets, the 
paper demonstrates the process for generating universal confusion matrices—that is, 
matrices that do not depend upon the details of the targets so long as the targets are 
uncorrelated. One winds up obtaining Rician random variables because of the need to 
compare the magnitudes of the test statistics (i.e., Rik = |Tik|). However, because the 
individual test statistics are uncorrelated, the required joint probability-distribution 
factors are easily obtained by multiplying the probability distributions associated with the 
individual test statistics. Although evaluation of cases involving uncorrelated targets and 
coherent processing is admittedly more of a theoretical than a practical case, this 
calculation provides insight into the upper limit of ID performance one can achieve as a 
function of the SNRs associated with measured targets. 

We have illustrated the reduced likelihood of being able to identify targets as they 
become partially correlated. In fact, Figure 7 shows that there is very little error in 
analyzing targets as if they are uncorrelated if their actual correlation is less than 50 
percent. To address partial target correlation, one requires the joint probability functions 
for partially correlated Rician random variables. 

The paper demonstrates by means of simulation that the conditions under which 
the multidimensional Gaussian distribution adequately approximates the required joint 
probability function. In those cases where the Gaussian approximation would not hold, it 
would always be possible to construct the joint PDF using numerical techniques. 

The paper also provides a methodology for performing noncoherent target 
processing. These latter cases, involving correlated targets and noncoherent processing, 
require application of the central limit theorem (i.e., normal approximations) to the 
Rician distribution. The correlated, noncoherent target cases reveal an interesting bias 
toward the declaration of targets that are closer to having a signature uniformly 
distributed over the measurement space as the SNR falls. This occurs if we simply apply 
our linear-statistic approach (16a) without modification when the SNR is low. However, 
if the templates for the noncoherent case are adjusted as a function of the SNR to reflect 
the expected return from a target, then this target-selection bias goes away. The paper 
further suggests how our process could be refined to deal with non-isotropic noise 
associated with either noncoherent processing or composite target templates 
corresponding to a target class. Also, we have shown that the noncoherent, correlated 
case can actually get worse as the number of elements in the measurement vector 
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increases, unless the added dimensionality leads to a calculable reduction in the 
correlation between the targets. 

Finally, the vector representation of target templates and measurements provides 
a useful way to think about the issues associated with making target class versus target 
type decisions. 
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APPENDIX—PROOFS 

This appendix provides proofs of the mathematical claims made in the text. 
Throughout the appendix the superscript H is used to denote the Hermitian conjugate 
(complex conjugate transpose) of a complex vector or matrix. 

A-1. Derivation of (8) 

While (8) may be obvious, the following few equations further demonstrate why 
it is true. For the threshold condition Xk ≥ α, the probability of observing Xk, given true 
target ti, is given by (5) with the lower limit on the final integral over xk replaced by α: 
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Next, examine the sum the sum of P(Xk|ti) over all target templates Xk: 

 k

n

k kX

kX
n

j
kX

n

k
ik dx

xF
xf

xFTXP
k

k

j∫ ∑∏∑
∞

===

=
α 111 )(

)(
)()|( . (A2) 

Now recognize that the integrand can be written as the derivative of the product 
of all cumulative functions, that is, 
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It follows that 
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where we have used the fact that cumulative probability functions are unity at infinity. 
The sum over all states, including the no-declare state, must be unity, that is 
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From this and (A4) one arrives at (8) in the paper, 
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Setting α = −∞ restores the no-threshold result P(ND|ti) = 0, as required. 

A-2. Vector Relations  

In this section we derive several statistical results concerning template, noise, and 
signal vectors, and we point out results that are mentioned in the paper. 

Let S be an n-dimensional, complex-valued template vector with norm 1: 
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Let N be an n-dimensional, complex-valued noise vector whose real and 
imaginary components are independent zero-mean Gaussian random processes with 
standard deviation σ: 
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Let Z be a complex-valued, n-dimensional signal vector given by Z = S + Ν . 

Some useful relations follow. 

a. 22 2 σnH >=>=<< NNN .  

Proof: 
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b. Cov(N)= I22σ>=< HNN , where I is the n-dimensional identity matrix. This is 
(12) in the paper.  

Proof: 

 αββαβββαβ δσ 2* 2   ))((  =>+<=>−+<=>< vvuuivuivuNN aaa . 

c. 22
2 σ=>< NHS .  
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Proof:  

 22
2     σSNNSSNNN(SN(SN HHHHHHH =><=><=><=>< ∗ SS )) . 

d. 22 21 σn+>=< Z . 

Proof:  

( ) >++<=>++<=>+<=>< NNSNNSSSNSNSNSZ HHHHHH +   )(    22  

 2211 σnHHH +>=<+>+= NNNN SS <+>< . 

e. ISSZZ 22σ+>=< HH .  

Proof:  

 ISSSSSSSZZ 22   ))((  σ+=>+++<=>++<=>< HHHHHHH NNNNNN S . 

f. 22
21 σ+=>< ZS H . 

Proof: 

 22
21 ))((  σ+=>=><=>< SHHHHHH ZZ<SZSZSZS . 

A-3.  Rayleigh Probability Density Function 

Here we show that the amplitude of the components of the noise vector N have a 
Rayleigh PDF. Consider a component of N given by u + iv. Since u and v are 
independent, zero-mean Gaussians, their joint PDF is given by the two-dimensional 
Gaussian: 

 
 

),( 2

22

2
2

)( 

2
1 σ

πσ
ρ

vu

evu
+

−
= . (A7) 

Switching to polar coordinates and accounting for the Jacobian, one obtains an 
element of probability in terms of the joint PDF expressed in polar coordinates,  

 
 

),( 2

2

2
2

 

2
1 θθθρ σ

πσ
rdrderdrdr

r

P

−
= . (A8) 

Integrating over all θ gives 
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0
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P
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θθρρ

−
== ∫RAY  (A9) 
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where we identify ρRAY(r) as the Rayleigh PDF. It is straightforward to show that 
σπ

2>=< r  and 22 2σ>=< r , from which the standard deviation is given by 

σπ
2

22 2 −=><−>< rr .  

A-4. Rician Probability Density Function 

In this section we prove that the amplitude of each component of the signal vector 
Z has a Rician PDF. We also present some useful properties of the Rician PDF. Consider 
a component of Z = S + N, given by (x + iy)+(u + iv) = a + ib. Similar to the above 
analysis, the joint PDF of a and b is given by 

 
 

),( 2

22

2
2

)()(

2
1 σ

πσ
ρ

ybxa

eba
−+−

−
= . (A10) 

Letting a = rcosθ, b = rsinθ, x = Asinφ, y = Asinφ, an element of probability in 
polar coordinates (r,θ) becomes 

 θθθρ σ
φθ

πσ
rdrderdrdr

rAAr

P
2

22

2
2

))cos(2(

2
1),(

−−+
−

= . (A11) 

Integrating over all θ gives 

 
drdee

rdrdrdrr

rAAr
r
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θθρρ

π
σ

φθ
σ
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π

∫

∫
−+

−
=

=

2

0

)cos(
2

)(

2

2

0

22

22

2

),()(RIC

. (A12) 

Since the θ integral is over all angles, it is independent of the angle φ and is given 
by [9] 

 e
r A cos(θ −φ )

σ 2 dθ
0

2π∫ = 2π I0( r A
σ 2 ) (A13) 

where I0 is the zeroth-order modified Bessel function of the first kind. Finally, the Rician 
PDF is given by 

 ρRIC(r) = r
σ 2 e

−
(r 2 +A 2 )

2σ 2 I0( r A
σ 2 ) . (A14) 

Note that for A = 0, the Rician density reduces to the Rayleigh density appearing 
in (A9).  

The mean value of the Rician is found from Mathematica to be 

 ( ))()()2( 2

2

2

2

2

2

2

22

2

4140
4

22 σσσσ
σπσ AAAA
A

IIer ++>=<
−

 (A15) 
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where I1 is the first-order modified Bessel function of the first kind. The mean can also be 
expressed in terms of a confluent hypergeometric function [10]. The Bessel function 
representation lends itself to obtaining expressions for the mean value for large and for 
small values of A for high and low SNR. When A/σ > 1 the modified Bessel functions can 
be approximated by their asymptotic expansions for large arguments [5]: 

 )1(~)( 8
1

2
1

0 L++ x
x

x
exI

π
. (A16a) 

 )1(~)( 8
3

2
1

1 L+− x
x

x
exI

π
. (A16b) 

Using these expressions in (A15), one finds an expression for the mean of a 
Rician for high signal to noise to order (σ/Α)2: 

 )1( 2

2

2A
Ar σ+>≈< . (A17) 

For low signal to noise (A/σ<1), the Bessel functions can be expanded around 
zero [9]:  

 L++=
4

1)(
2

0
xxI  (A18a) 

 L++=
162

)(
3

1
xxxI  (A18b) 

After expanding the exponential in (A15), substituting the approximations (A18) 
into (A15), and retaining terms to order A2/σ2, one finds 

 ( )2

2

42 1
σ

πσ Ar +>≈< . (A19) 

The second moment of the Rician is computed easily from the definition of r2: 

 >++++>=<+++>=<+>=<< 22222222 )(2)()( vuyvxuAvyuxbar  (A20) 

where the averages are performed over the Gaussians u and v. Only the even terms in u 
and v survive, giving 

 222 2σ+>=< Ar . (A21) 

If the parameter A has been normalized to one, then 22 21 σ+>=< r , as appears in 
(19) in the text. The variance of the Rician is given by  

 222 ><−>=< rrRICσ . (A22) 

For high signal to noise the variance, through (A22), (A21), and (A17), becomes 

 )1( 2

2

4
22

A
σσσ −≈RIC  (A23) 

valid to order (σ/Α)2.  
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Finally, it is useful to find conditions under which the Rician PDF can be 
approximated by a Gaussian PDF. Starting with the Rician PDF in (A14) and using the 
asymptotic expansion of I0 for large arguments (A16a), one has to leading order  

 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
− 2

2

2
)(

2
1~)( σ

σπ
ρ

Ar

A
r erRIC . (A24) 

The term in parentheses is recognized as a Gaussian with mean A and standard 
deviation σ. When σ is sufficiently small, the density is appreciable only near r = A; in 
this event, the prefactor Ar  is of order unity, and the density is approximately 

Gaussian. Recapping, the conditions for the Rician PDF to be approximated by a 
Gaussian are σ/A << 1 and r ~ A. 

A-5. Coherent Processing Results  

In this section we derive the main coherent processing results mentioned in the 
text. We start with the covariance matrix result stated near the conclusion of Section IV 
[after (17)]. For each true target iS , form the signal vector NS=Z +ii  and the n complex 
random variables i

H
kikT ZS=  k = 1, 2,…, n. The covariance matrix is given by 

 )()( * ><−><−= ikikijijjk TTTTC . (A25) 

Now, i
H
k

H
ki

H
ki

H
kikT SS>=NSSSZS +>=<>=<< , and similarly < Tij >= S j

H Si. There-

fore, 

 jj SSS>NN<SNSNS H
k

HH
k

H
k

H
jjkC 2* 2)()( σ===  (A26) 

where the last equality follows from relation A-2b above. Note that the covariance matrix 
is independent of the true target iS . If the targets kS  and jS  are orthogonal, then 

jkjkC δσ 22=  [(18) in the text]. 

It is shown below that when the signal and template vectors are matched, the 
amplitude || iiii TR =  is a Rician random variable with parameters A = 1 and σ. Then, from 
(A21) 22 21 σ+>=< iiR . If the targets kS  and iS  are independent, then the amplitudes Rik  
and Rij  are independent with joint expectation given by  

 jkikijRR δσ )21( 2+>=< .  (A27) 

This is (19) in the text. 

We now show that, in general, the amplitudes || ikik TR =  are Rician random 
variables. Decomposing Tik  into real and imaginary parts, iQPTik += , one finds  
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 ( ) ( ))(ReRe NSSZS +== i
H
ki

H
kP  
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⎝
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+−+= ∑

=

n
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i

H
k ivuiYX

1

))((Re)Re( ααααSS  

 ∑
=

++=
n

a
i

H
k vYuX

1

)()Re( ααααSS . (A28) 

Similarly, 

 ( ) )()Im(Im
1

∑
=

−+==
n

i
H
ki

H
k uYvXQ

α
ααααSSZS . (A29) 

P and Q are then real Gaussian random variables; their means and variances 
follow. Thus, ( )i

H
kP ZSRe>=<  and ( )i

H
kQ ZSIm>=< . Then  

 ∑∑
==
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+=>><−=<
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vYuXvYuXvYuXPP
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22 ))(()(
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n

a vvYYuvXY

vuYXuuXX

1,β βαβαβαβα

βαβαβαβα  

 2

1

222 )( σσ αα =+= ∑
=

n

a

YX  (A30) 

where the final result follows from the normalization of Sk . A similar calculation yields  

 222 )( σσ =>><−=< QQ
Q

. (A31) 

It is also straightforward to verify that 0))((2 =>><−><−=< QQPP
PQ

σ , from 

which it follows that P and Q are independent Gaussian random variables. Hence, the 
joint distribution of P and Q is 

 
 

2
1),( 2

22

2
))Im(())Re((

2
σ

πσ
ρ

i
H
ki

H
k QP

J eQP
SSSS −+−

−
=  (A32) 

which is identical in form to (A10). We conclude that 22 || QPTR ikik +==  has the Rician 

PDF 

 )()( 2

2

22

2 0
2

)(

σ
σ

σ
ikik

ikik

ik cR
cR

R
ikik IeRf

+
−

=  (A33) 

where || i
H
kikc SS= . This is (24) in the text. For i = k (perfect overlap), cik =1, whereas for 

independent targets, 0=ikc , and the Rician reduces to a Rayleigh PDF (21) 
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For correlated targets, the joint expectation >< ikij RR  cannot be computed exactly; 

however, an approximate relation can be found to order σ2, as outlined in the following.  

 ><=><=><=>< ||  ||  ||||  k
HH

jk
H
i

H
j

H
k

H
j SNSNSSSZZSZSZS )+)(+( iiiiiikijRR   

 >=< || k
HH

jk
H
i

H
jk

HH
jk

H
i

H
j SNNSSNSSSNSSSSSS +++ ii  (A34) 

Defining k
H
i

H
j SSSS iD = , k

HH
j SNSS iE = , k

H
i

H
j SNSS=F , and k

HH
j SNNS=G , the 

joint expectation becomes 

 >++++++<=>< *))((  GFEDGFEDRR ikij  

 
>++++++++

+++++++=<

2
1

********

****2222

}

|||||||{|

GFGEGDFGFEFDEGEF

EDDGDFDEGFED
 (A35) 

In anticipation of expanding the square root, we retain terms up to quadratic order 
in the noise vector,  

 >++<≈>< 2
1

2 )|(|  LKDRR ikij  (A36) 

where K contains the first-order terms in N and L contains second-order terms in N, with 

 **** FDDFEDDEK +++=   (A37a) 

 ****22 |||| FEEFGDDGFEL +++++= . (A37b) 

Expanding the square root, the joint expectation becomes 

 >+−++<>≈< })()(1{|| 2
||8

1
||2

1
42 LKLKDRR

DDikij . (A38) 

Since K is linear in N, the average over K vanishes. Again, keeping terms up to 
quadratic order (A38) becomes 

 )1(|| 4

2

2 ||8||2 D
K

D
L

ikij DRR ><>< −+>≈< . (A39) 

Before computing the averages >< L  and >< 2K , it is beneficial to examine 
which terms survive the averaging process. Consider the term FE* in >< L ,  

 iiFE SSSSNNSSSNSSSNSS H
jk

H
i

H
k

H
jk

HH
jk

H
i

H
j ><=><=><   )*(  * )( . (A40) 

Let the noise vector be denoted by T
n ), , ,( 21 ηηη L=N . Now, the average in (A40) 

is an average over a quadratic form in the components of N, 

 ∑
=

><>=<
n

C
1,βα

βααβ ηηNNSS H
k

H
j  (A41) 
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where the coefficients Cαβ depend on the template vectors S j  and kS . Since the 
components of N are independent and 0>=< αη , the only terms that could potentially be 
nonzero are the “diagonal” terms >< 2

αη ; however, writing αααη ivu +=  one has 

 02222 >=+−>=<< αααααη vuivu  (A42) 

and the average >< *FE  vanishes. We conclude that all averages containing quadratic 
forms in N or NH vanish; only those average that contain both N and NH survive. For the 
average over >< L  the surviving terms are >< 2|| E , >< 2|| F , >< *DG , and >< *GD , 

which we now compute:  

 jiiiE SSSNNSSSSNSSSNSS H
ik

HH
k

H
jk

HH
jk

HH
j ><=><=>< *2 ))(|| (  

 
2

SS i
H
j

22σ= , since 22 22 σσ ==>< k
H
kk

HH
k SSSNNS . (A43a) 

 iF SSSSSNNSSNSSSNSS H
kk

H
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HH
jk

H
i

H
jk

H
i

H
j ><=><=>< *2 ))(|| (  

 
2

SS i
H
k

22σ= , since 22 22 σσ ==>< j
H
jj

HH
j SSSNNS . (A43b) 
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HH
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H
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H
i

H
j SNNSSSSSSNNSSSSS ><=><=>< iiDG ** ))((  

 **2 )())((2 k
H
j

H
k

H
j SSSSSS iiσ= , since INN 22σ=>< H . (A43c) 

 ))(()(2][ *2***
k

H
j

H
k

H
j SSSSSS iiDGGD σ=><=>< . (A43d) 

Letting ij
j

i
iji

H ec φ=SS , ik
k

i
iki

H ec φ=SS , and kj
j

i
kjk

H ec φ=SS , such that, for example, 

 222*2222 22)()(2||2|| ij
i

ij
i

iji
H
ji

H
ji

H
j cececE ijij σσσσ φφ ====>< −SSSSSS  

 )(22* 22 kjikijkjikij i
kjikij

i
kj

i
ik

i
ij ecccecececDG φφφφφφ σσ −−−− ==><  

>< L  becomes ><+><+><+>=<>< **22 |||| GDDGFEL  

 ))cos(2(2 222
kjikijkjikijikij ccccc φφφσ −−++= . (A44) 

The surviving terms23 of >< 2K  are  

                                                 
23 We start with the following 
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DFEDFDDEDFDEEDDEFD

DFEDDEFDDFEDDEK
 

and examine some of the terms to demonstrate which terms survive. For example: 

 ( ) ( ) ( ) ( ) ( ) ( ) ><=><=>< NSNSSSSSSSNSSSSSSS H
k

H
kj

H
ik

H
ii

H
j

H
kj

H
ik

H
ii

H
jDE

22222222* )()(  

but the term >< NSNS H
k

H
k  is similar in form to (A41) and therefore equals zero. A similar argument 

applies to the other squared terms. Since D, E, and F are complex scalars, their order can be 
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 ><+><+><+><=>< **2222**2 2||||2||||22 FDEDFDEDDFDEK . (A45) 

Similar calculations to those involving >< L  yield 

 ))cos(2(4 2222
kjikijkjikijikijikij cccccccK φφφσ −−++=>< . (A46) 

Noting that ikiji ccD == k
H
i

H
j SSSS , substituting (A46) and (A44) into (A39) and 

simplifying, one finally gets  

 ( ))cos(2
2

22
2

kjikijkjikijikij
ikij

ikijikij ccccc
cc

ccRR φφφσ
−−+++≈><  (A47) 

valid to order σ2 (actually to order σ3, since the cubic terms vanish). This is (29) in the 
text. 

A-6. Noncoherent Processing Results  

In this section, we derive the covariance matrix result for the true target Ai [(39) 
in the text]. First, from the definition of the signal vector 

 T
mimii

T
imiii nsnsnsyyy |)|,...|,||,| ),...,,( 221121 +++==Y  (A48) 

and it is clear from the discussions in Section A-4 that each component of iY  is a Rician 

random variable with PDF 
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2 σ
σ

σ
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ikik
ay

ay
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ikik Ie
y

yf
+

−
= . (A49) 

For each target vector Yi , associated with true target Ai but compared against 
target template Ak, the test variables wik  are given by 

 ∑
=

==
m

iki
T

kik yaw
1α

ααYA , k = 1, 2,…, n. (A50) 

The covariance matrix elements are given by  

 >><−><−≡< ))(()( ikikijijjk wwwwiQ  

 >><<−>=< ikijikij wwww . (A51) 

                                                                                                                                                 
interchanged such that ><=><=>< 22**** |||| EDEEDDEDDE . Also, 0|| *2** =><=>< FEDFDDE , which 
follows (A41) and (A42). Finally, 0|| *2** =><=>< EFDDFED , which follows from (A41) with N 
replaced by NH or by recognizing that ***** ][ ><>< FDDEDFED . 
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Then  

 ><−>=< i
T

ki
T

ji
T

ki
T

jjk iQ YAYAYAYA ><)(  

 k
T

ii
T

jk
T

ii
T

j AYYAAYYA ><−><= ><  

 k
T

ii
T

ii
T

j AYYYYA )( ><−><= ><  

 ki
T

j AYA )(Cov=  (A52) 

where )(Cov iY  is the covariance matrix for the signal vector iY . Since the components of 

iY  are independent Rician random variables, the covariance is diagonal with Rician 

variances on the diagonal, 

 αβααβ δσ 2)(Cov ii =Y  (A53) 

with 

 222 ><−>=< ααασ iii yy  (A54) 

where the mean and second moment of the Rician random variable yiα  are given in (A15) 
and (A21), respectively.  

Substituting (A54) into (A53) yields 

 αα
α

αβαβα
βα

α σδσ ki

m

jki

n

jjk aaaaiQ 2

1

2

1,

)( ∑∑
==

==  (A55) 

which is (39) in the text. 

References 

1. R. A. Mitchell and J. J. Westerkamp, “Robust statistical feature based aircraft 
identification,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 35, No. 3, 
July 1999, pp. 1,077–1,094. 

2. R. J Sullivan, Radar Foundations for Imaging and Advanced Concepts, Raleigh, 
NC: SciTech Publications, 2004. 

3. J. K Haspert, “Optimum ID sensor fusion for multiple target types,” IDA Document 
D-2451, March 2000. 

4. L. E. Brennan and I. S. Reed, “Theory of adaptive radar,” IEEE Trans. Aerospace 
and Electronic Systems, Vol. AES-9, No. 2, March 1973, pp. 237-252. 



 

 A-12 

5. A. Dalcher, private communication.  The integral (22c) is found in 6.633, #4 of I. S. 
Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Corrected 
and Enlarged Edition, Orlando: Academic Press, 1980. 

6. P. Y. Kam, “Tight bounds on Rician-type error probabilities and some 
applications,” IEEE Trans. on Communications, Vol. 42, No. 12, December 1994, 
pp. 3119–3128. 

7. K. S. Miller, Multidimensional Gaussian Distributions, New York: Wiley, 1964. 

8. R. O. Duda, Hart, P. E. and Stork, D. G., Pattern Classification, 2nd Ed., New 
York: Wiley, 2001. 

9. R. S. Burlington and D. C. May, Handbook of Probability and Statistics with 
Tables, Sandusky, OH: Handbook Publishers, Inc., 1958. 

10. J. Sijbers, A. J. den Dekker, P. Scheunders, and D. Van Dyck, “Maximum-
likelihood estimation of Rician distribution parameters,” IEEE Transactions on 
Medical Imaging, Vol. 17, No. 3, June 1998, pp. 357–361. 

 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR 
FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE  
March 2005 

2. REPORT TYPE 
Final

3. DATES COVERED (From–To) 
May 2003–June 2004

5a. CONTRACT NUMBER 
DASW01 04 C 0003 

5b. GRANT NUMBER 
 

4. TITLE AND SUBTITLE 
 
General Approach to Template-Based Target Recognition 
 

5c. PROGRAM ELEMENT NUMBER 
 

5d. PROJECT NUMBER 
 

5e. TASK NUMBER 
IDA Central Research Project C2081 

6. AUTHOR(S) 
 
J. Kent Haspert, James F. Heagy, Roger J. Sullivan 

5f. WORK UNIT NUMBER 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
Institute for Defense Analyses 
4850 Mark Center Drive 
Alexandria, VA 22311-1882 

 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

 
IDA Paper NS P-3981 
 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 

 
Institute for Defense Analyses 
4850 Mark Center Drive 
Alexandria, VA 22311-188 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

 
 

12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

 
13. SUPPLEMENTARY NOTES 

 
14. ABSTRACT 

The reported work began as an effort to understand the fundamental differences between target identification 
techniques based on one-dimensional high range resolution radar and two-dimensional range-Doppler-imaging radar. The 
work evolved into a more general statistical methodology using target templates to compute the entries in probability (or 
confusion) matrices, typically used to characterize combat identification (CID) systems. Starting with a set of complex-
valued vector target templates, we present a systematic framework for generating and comparing a set of scalar test 
statistics and estimating their probability of occurrence. These probabilities form the entries of the confusion matrix. We 
discuss the impact of random noise on the CID process and present the results of applying the template/confusion matrix 
methodology to a few simple target representations. Specific attention is given to examining the relative issues associated 
with coherent and noncoherent target identification. For both coherent and noncoherent cases, approximate methods are 
developed to permit efficient computation of the confusion matrix entries, and the conditions for which these 
approximations are valid are discussed. Finally, we discuss several real-world, practical issues associated with the 
template-based methodology and the CID process. 
15. SUBJECT TERMS 
 
Coherent and noncoherent processing, combat identification, confusion matrices, Fisher Linear Discriminant, matched 
filter 
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON 

J. Kent Haspert 

a. REPORT 
Uncl. 

b. ABSTRACT 
Uncl. 

c. THIS PAGE 
Uncl. 

17. LIMITATION 
OF ABSTRACT 

 
U/L 

18. NUMBER 
OF PAGES

 
64 19b. TELEPHONE NUMBER (include area code) 

703-845-2427 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 




